List of figures

2.1.	Phase space trajectories and the Poincarè section 11
2.2.	OGY control algorithm14
3.1.	Experimental schematic
3.2.	Nozzle construction details
3.3.	Multivariate statistical techniques used to predict the bubbing regime from the period of
	formation data
3.4.	Real time identification and fault identification
4.1.	Pressure trace in gas inlet line, upstream of the nozzle
4.2.	'Shoulders' in pressure time series
4.3.	Pressure trace for period-1 bubbling
4.4.	Power spectrum distribution for period-1 showing a single fundamental peak43
4.5.	Phase space for period-1 bubbling showing a single-loop
4.6.	High speed images of slow bubbling
4.7.	Pressure trace for period-2 bubbling
4.8.	Power spectrum distribution for period-2 showing two fundamental peaks
4.9.	Phase space for period-2 bubbling showing two-loops46
4.10	.High speed images of period–2 formation of bubbles
4.11	Pressure trace for period-4 bubbling
4.12	Power spectrum distribution for period-4 showing three fundamental peaks

4.13. Phase space for period-4 bubbling showing four-loops
4.14. Pressure trace for chaotic bubbling
4.15. Power spectrum distribution for chaotic bubbling
4.16. Chaos in phase space
4.17. Pressure traces for bubbling with varying applied electrostatic potential, at a constant
flow rate of 334 cc/min55
4.18. Pressure trace for 1mm ID nozzle at 0kV
4.19. Pressure trace for 1mm ID nozzle at 5kV
4.20. Pressure trace for 1mm ID nozzle at 7.5kV
4.21. Period of formation of bubbles against bubble number, with varying applied electrostatic
potential at a constant flow rate of 334 cc/min
4.22. Time return maps with an increase in the applied electrostatic potential at a constant
flow rate of 334 cc/min60
4.23. Time return maps with an increase in the flow rate at a constant applied electrostatic
potential of 10,000 V61
4.24. Time return maps with an increase in the respective control variable
4.25. Chaotic strange attractor in a 3-d time return map
4.26. Phase space variations with varying applied electrostatic potential field strength, at
constant flow rate of 334 cc/min
4.27. Power spectrum variations with varying applied electrostatic potential field strength, at
constant flow rate of 334 cc/min

4.28. Bifurcation with applied electrostatic potential field strength, at constant flow rate of		
334 cc/min		
4.29. Position of a single run with respect to bifurcation with flow-rate and electrostatic		
potential in tandem		
4.30. Bifurcation with flow and voltage		
4.31. Bifurcation with flow and voltage against dimensionless axes		
4.32. Bubbling regime plot in terms of the modified Weber number		
4.33. Bubbling regimes in terms of Tsuge's flow rate number versus electric Bond number		
4.34. Frequency mapped as a surface plot against dimensionless flow-rate and voltage 76		
5.1. Performance of numerical model using partial least squares		
5.2. Neural network performance for identifying the periodicity of bubbling		
5.3. Period-1 identification with periodicity pattern identifier		
5.4. Period-2 identification with periodicity pattern identifier85		
5.5. An drift of 220cc/min in the disturbance (flow-rate), compensated by voltage to track a		
set point of constant bubbling frequency (0.05s)		
5.6. Negative step change of 235cc/min in disturbance (flow rate) tracked by voltage for a		
set point of 0.05s		
5.7. Positive step change of 220cc/min in disturbance (flow rate) tracked by voltage for a set		
point of 0.05s		
5.8. Sorting fixed points on the 45° line on the time return map to find a true fixed-point92		

5.9.	Identifying the stable and unstable manifold directions
5.10	OGY control attempt with electrostatic potential as the single control variable 98
5.11	Frequency distribution of zero crossings before control is turned on (region b) 100
5.12	Frequency distribution of zero crossings after control is turned on (region c_1) 101
5.13	Frequency distribution of zero crossings after control is turned on (region c_2) 102
5.14	Frequency distribution of zero crossings after control is turned off (region d)103