
 

 

 

 

 

Chapter 2 

Background 

The world that we have created thus far creates problems which cannot be solved at the same level we 

created them 

Albert Einstein 

 

 

2.1 Electrostatic potential as an additional bifurcation 

variable 

Though a seemingly simplistic phenomenon, bubbling involves complex interactions 

between the gas and the liquid in play. The production of bubbles by various means is used in a 

plethora of technical applications, especially in the chemical and environmental engineering fields. 

Water treatment, metallurgy, froth flotation, fermentation, fluidization, and distillation are some 

widespread examples. Efficient gas-liquid processes introduce the gas in the form of small 

bubbles, since the greater interfacial area increases interphase heat and mass transfer.  In an ideal 
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gas-liquid system, the bubbles are uniformly sized for even and predictable process performance; 

however, in reality, gas-liquid systems generally have a broad bubble-size distribution and complex 

dynamics (Kikuchi & co-workers, 1997; Femat 1998; Luewisutthichat & co-workers, 1997). 

Bubble formation in a liquid from a submerged orifice has been the subject of numerous 

scientific studies, primarily aimed at theoretical prediction and experimental measurement and 

correlation of bubble size for prediction of interfacial area (Deshpande & co-workers, 1991; 

Terasaka & co-workers, 1992; Tsuge, 1986; Longuet-Higgins, 1991). Notable among these works 

is the development of an understanding that bubble size and bubbling frequency is influenced in a 

complex way on the interactions between consecutively formed bubbles. At low gas flow rates, 

bubbling is regular and periodic, while at increasing flow rates bubble formation becomes irregular. 

In their classic paper, Davidson and Schüler (1960) were perhaps the first to illustrate, through 

high-speed photography, the interaction between leading and trailing bubbles that leads to 

coalescence at higher flow rates. Subsequently, several investigators have identified different 

regimes of bubbling, defined by dimensionless groups and characterized by different amounts of 

interactions between forming bubbles (Miyahara & co-workers, 1984; Tsuge & co-workers 

1986).  Models for the prediction of bubble volumes have been developed that incorporate the 

interaction between a primary bubble and subsequent bubbles at higher gas flow rates (Deshpande 

& co-workers, 1991). 

With the availability of the advanced experimental equipment and the advent of the 

science of nonlinear dynamics, progress has been made recently in the understanding of bubbling. 

Leighton and co-workers (1990) illustrated the complex hydrodynamic phenomena present in 

bubbling through both high-speed imaging and acoustic signatures. Chaos in bubbling patterns was 



Chapter 2: Background 

 

6

first reported by Tritton and Edgell (1993), who reported a period-doubling bifurcation with gas 

flow rate in bubbling of air from a single submerged orifice into water-glycerol mixtures. Mittoni 

and coworkers (1994), reported deterministic chaos in a similar system under a range of conditions 

by varying chamber volume, injection nozzle diameter, liquid viscosity and gas flow-rate. Similar 

results were obtained for bubbles by Tufaile & Sartorelli (2000). Nguyen and co-workers (1996), 

have demonstrated the spatio-temporal behavior of bubbles in single train of rising gas bubbles in a 

liquid column.  

In the above studies, chaotic bubbling was studied primarily with flow rate as the 

bifurcation variable. Significant effects of external forces on bubbling, such as pulsing a flowing 

liquid (Fawkner and co-workers, 1988), and application of sound perturbations (Cheng, 1996; 

Tufaile & Sartorelli, 2000) have been demonstrated. Most notably, Tufaile & Sartorelli (2000) 

reported the capability to transform a chaotic bubbling state to a periodic state by the application 

of a synchronized sound wave.  

The aim of the present study is to explore whether an applied electrostatic potential can 

be used as an additional bifurcation variable in bubbling dynamics. If successful, then electrostatic 

potential can be employed for control.  

Zaky and Nossier (1977) first reported the effect of an electric field on bubbling, noting a 

decrease in bubble size and an increase in pressure upstream of the nozzle with increasing voltage 

for bubbling of air into transformer oil and n-heptane through an electrified needle. Further studies 

by Ogata et al. (1979, 1985) and Sato et al. (1979, 1980) showed that by the application of a few 

kilovolts, bubble size can be reduced from a few mm to less than 100 µm in many liquids, including 

nonpolar fluids like cyclohexane and polar compounds such as ethanol and distilled water.  Sato 
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and coworkers (1993) reported similar results for liquid-liquid systems in which the time scale of 

electrical charge relaxation (i.e., permittivity/conductivity) of the injected fluid is greater than that 

of the continuous fluid. This type of dispersion has been termed “inverse electrostatic spraying” 

(Tsouris et al. 1998) to differentiate it from the well studied “normal” electrostatic spraying (Grace 

and Marijnissen 1994). Several practical applications have been suggested for this type of 

spraying, including generating fine bubbles for flow tracers (Sato et al. 1980), enhancing gas-liquid 

reactions (Tsouris et al. 1995), and producing uniform microcapsules (Sato et al. 1996).   

Two main controlling mechanisms have been identified – electric stress and 

electrohydrodynamic flows.  The electric stress acts directly at the gas-liquid interface of growing 

bubbles and is directed inward (Tsouris et al. 1994; Harris and Basaran 1995).  This force is 

manifested by an increase in nozzle pressure with an increase in applied voltage.  Above a critical 

voltage whose magnitude depends on nozzle geometry, electrohydrodynamic flows are induced in 

the bulk fluid (Sato et al. 1980, 1993, 1997).  These toroidal flows have a significant velocity near 

the injection nozzle and are directed outward from the points of highest field gradient. Under 

conditions of electrohydrodynamic flow, a significant decrease in nozzle pressure is exhibited with 

increasing voltage (Tsouris et al 1998).  The dynamics of electrified bubbling are complicated by 

the interactions of these mechanisms.  Sato (1980) described three regimes of bubbling: periodic 

bubbling, dispersed bubble production, and a high-voltage region characterized by sparking and 

larger bubble production.  Similarly, Shin et al. (1997) outlined three bubbling modes – dripping, an 

erratic mixed mode, and a spraying mode.  These modes were roughly characterized by flow rate 

using a Reynolds number, and by a combination of electrical forces and buoyancy forces using a 

modified Weber number.  To date, no detailed study of the dynamics of electrified bubbling has 
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been conducted; for example, it has not been verified that the regimes characterized as periodic 

are truly periodic, nor are there any detailed analyses and/or means of prediction of the transitions 

from periodic bubbling.  Beyond its intrinsic scientific value, such information would be highly 

valuable in guiding the production of monodispersed droplets/bubbles. 

In the present study, the effect of an applied electrostatic potential on bubbling dynamics 

was determined experimentally. In these experiments, bubbles were formed in a sufficiently 

viscous liquid (glycerol) such that electro-hydrodynamic flows were negligible and the main 

electrostatic mechanism affecting bubbling was the electric stress at the gas-liquid interfaces of 

the forming bubbles. Deterministic chaos analysis was applied to signals of the temporal 

fluctuation of pressure in the injection nozzle during bubbling under controlled experimental 

conditions to probe the combined effect of flow rate and applied voltage on bubble formation 

dynamics.  

 

2.2 Chaos & feedback control 

Identification of electrostatic potential as an additional bifurcation variable provided the 

basis for further investigation into control of bubbling processes using electrostatic potential as the 

additional control variable. Study of chaos and understanding the chaotic patterns involved is 

necessary for implementing control on the bubbling process.  

Since the classic paper by Ott, Grebogi and Yorke, (1990) controlling chaos in physical 

systems has been investigated by many researchers (Ditto & co-workers, 1990,1995; Hunt, 1991; 

Roy et. al., 1992; Garfinkel & co-workers, 1992; Rollins & co-workers, 1993; Petrov & co-



Chapter 2: Background 

 

9

workers, 1993). This section begins with an introduction to concepts of chaos, and then proceeds 

to develop the Ott, Grebogi and Yorke, (OGY) control algorithm for a 2-dimensional system (Ditto 

& co-workers, 1990). A development for multi-variate OGY control is also presented.  

2.2.1 Concepts of chaos 

Dynamical systems can be represented by equations of motion, which can be written as 

( )tpxFx ,,
.

=  (1) 

for continuous systems and  

( )npxFx ,,
.

=  (2) 

for discrete systems. In these equations, we have Nx ℜ∈ , which are state variables, pNp ℜ∈ , 

which are system parameters, and ( )F , which is a set of N equations describing the behavior of 

the system. The solution to equation for continuous systems moves in a N -dimensional space 

called the phase space and is usually solved numerically. The basis of this space is given by the 

state variables x , i.e. the location of the state of the system is determined by taking all the state 

variables as orthogonal coordinates in the phase space. The system starts out at a certain initial 

condition ( )00 == txx  in space. From the initial condition, dynamical systems trace smooth 

trajectories in phase space as they proceed in time.  The shape in phase space that the trajectory 

approaches as ∞→t  is called the attractor of the system. For periodic motions these 

trajectories are loops that are traced repeatedly with every period of the system.  

Chaos can be termed as the superposition of a very large number of unstable periodic 
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motions. A chaotic motion may dwell for a brief time on a motion that is very nearly periodic and 

then may change to another motion that is periodic with a period that is perhaps five times that of 

the original motion and so on. The constant evolution from one (unstable) periodic motion to 

another produces a long-term impression of randomness, while showing short-term glimpses of 

order. (Ditto et al, 1995)  

Sensitivity to initial conditions is a hallmark of a chaotic systems. For a chaotic system, 

there are a very large number of trajectories corresponding to each unstable periodic motion, 

which pass close together. A small perturbation can shift the system from one trajectory to 

another. Thus for small changes in the initial state, the subsequent behavior of a chaotic system 

can appear to be very different. 

The phase space trajectories contain all the information necessary to predict the future 

dynamics of the system. But phase space plots can be complicated and Poincare sections of 

phase space plots, which are obtained by cutting through the phase space with a plane, are used 

for simplification (figure  2.1). The infinite numbers of points in the phase space are thus reduced 

and the information contained is more manageable. The number of points in the Poincare section 

reveals the underlying periodicity of the system. Usually any periodic system of period n has a 

section, which consists of a finite set of n distinct points, which reflect the fundamental periodicity 

of the system. However for chaotic systems, the superposition of infinite number of periodic 

motions causes infinite number of points in the section.  

In general the evolution of a chaotic system converges to an extended geometric structure  
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Figure 2.1. Phase space trajectories and the Poincarè section 

(Source: Van Goor,1998) 
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(the chaotic attractor), which is an infinitely long path (implying that it is not periodic motion), but 

at the same time does not completely fill up the state space, (implying non-random behavior, 

because a truly random system will have trajectories, which cover the entire volume of phase 

space available to the system). 

In order to control chaos according to the OGY scheme it is only necessary to identify an 

unstable periodic point in the attractor, to characterize the shape of the attractor locally around 

that point and to determine the response of the attractor at that point to an external stimulus.  

The OGY scheme can replace the Poincare section by a delay coordinate embedding. 

This embedding depends on the recognition that information obtained by measuring all the system 

variables (position and momenta) at one given time may also be obtained by only one system 

variable obtained at several subsequent times. This system state vector (the set of all the positions 

and momenta, ),....)(),(),....,(),(( 2121
nnnnn tptptxtxx =  is replaced by a delay coordinate 

vector, )),........3(),2(),(),(( ttxttxttxtx n
i

n
i

n
i

n
i ∆−∆−∆− , where the superscript I indicates 

on a particular experimental measurable and where t∆ is some appropriately chosen delay.  In 

other words the dynamics in full space can be reconstructed from measurements of just one time 

dependent variable and this time dependent variable carries sufficient information about all the 

others. For an N degree of freedom system with time series )(tx , the signals are plotted versus 

the delayed or advanced signals by a fixed time constant. The time series generates a trajectory 

)(tp in N dimensional space.  

)}(),....,2(),(),({)( tmtxttxttxtxtp ∆+∆+∆+=  (3) 

where m is the embedding dimension and k is the time delay or time lag. According to Takens' 
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theorem the rule of thumb for selecting time delay of lag involves satisfying the following criteria. 

12 +> dm , where d is the actual dimension of the attractor (Takens, 1981). The choice of m  

and t∆ are not crucial except to avoid a natural period of the system.  

The OGY control scheme requires the attractor to be characterized and an unstable fixed 

point on the Poincare section identified, about which control is desired. Then the motion of the 

point representing the current system state along the stable and unstable directions is identified. 

The stable and unstable directions on the map are the directions in the neighborhood of the 

unstable fixed point, in which the current system state is seen to approach and depart to the 

neighborhood of the fixed point.  These two directions form a saddle around the unstable point. 

These directions (eigenvectors), along with the speed (the eigenvalues), with which the points 

approach the fixed point (or depart from the fixed point), characterize the shape of the attractor 

locally around the fixed point. The OGY control algorithm uses this property of chaotic systems to 

identify the direction in which control is implemented. These eigenvectors manifest themselves as 

stable and unstable manifolds on the time return map, which is a low dimension projection of a 

time delay embedding. On the time return map, the unstable manifold lies along the tangent to the 

chaotic attractor evaluated at the location of the fixed point.  

 

2.2.2  OGY control 

The OGY method waits for the system to land close to the desired fixed point. Once the 

system is close to the fixed point, the control algorithm perturbs a parameter p such that the next 

iteration falls onto the stable manifold of the unperturbed system. (figure 2.2) The system  
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Figure 2.2. OGY control algorithm 

(Source: Van Goor,1998) 
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dynamics will then naturally draw the system closer to the fixed point. The derivation of the OGY 

algorithm is as follows. The algorithm is based on the linearization of the system close to the 

location of the fixed point, where the linearization is assumed to be valid. This is a reasonable 

assumption as the fixed point maps to itself. The linear dynamics can be expressed as: 

( ))()(1 pxxMpxx FnFn −=−+  (4). 

where NNM ×ℜ∈  is the mapping matrix. The mapping matrix M is characterized by its 

eigenvectors and eigenvalues: 

sss

uuu

eMe
eMe

λ
λ

=
=

 (5) 

where the subscripts u and s correspond to the unstable and stable directions respectively. The 

eigenvectors are normalized but may be non-orthogonal. The eigenvalues satisfy the 

condition, us λλ < . 

Let us consider the space to be two-dimensional. For a two-dimensional map, 









=

2

1

x
x

x or [ ]21 xxxT = . (6) 

In this two-dimensional space there is a map that depends on a parameter p : 

( )pxfx nn ,1 =+ . (7) 

The fixed point for this map is also a function of the parameter p : 

( )pxfx FF ,= . (8) 
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Thus if the parameter is changed every iteration the fixed point also changes: 

( ) ( )( )ppxfpx nFnF ,= . (9) 

The shift vector s  for the estimation of the perturbed fixed point is given by: 

( ) ( ) ( )

nn

nFnF
ppF

nnnFnF

pp
pxpx

px
dp
d

s

spppxpx

n −
−

≡

−+

+

+
=

++

1

1

11

)()(
~)(

,~
. (10) 

In the vicinity of the fixed point, the map can be represented by a two dimensional square matrix 

for two-dimensional space. 

)(~
),(~)(

1

1

FnFn

FnFn

xxMxx
xxMxx

−+
−−

+

+  (11) 

If the current state is nx state of the system after the next iteration depends on the value of the 

nominal parameter op , and the perturbation p∆ we apply to it. To find an equation for 1+nx , we 

have, 

))(()(1 ppxxMppxx oFnoFn ∆+−+∆+=+  (12) 

Expanding this into a first order Taylor series, we find 

)))(()(1 pspxxMpsppxx oFnoFn ∆−−+∆+∆+=+  (13) 

The current state of the system is shown in figure 2.2(a). Equation (13) is shown as a red line in 

figure 2.2(b). To force the system towards the fixed point, state should be on the stable manifold. 

To express this condition mathematically, a change of basis is required with the new basis 

vectors, sf and uf defined normal to the unstable and stable manifolds respectively. In the new co-
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ordinate system, )( 1 Fn xx −+ has to be orthogonal to the basis vector uf , (which is in turn 

orthogonal to the stable direction se ). 

This can be expressed as: 

0)( 1 =−+ Fn
T

u xxf  (14) 

The vectors sf and uf can be shown to be the left eigen vectors of M , and are defined as: 

T
ss

T
s

T
uu

T
u

fMf

fMf
λ

λ

=

=

 (15) 

The left and the right eigenvectors are related through the relation 

[ ] 1−=







su

T

s

u ee
f
f

 (16) 

By replacing )( 1 Fn xx −+  we get 

( ) psfpspxxMf T
sFn

T
u ∆+∆−−= )(0  (17) 

By replacing M with its eigenvectors 

( ) psfpspxxf T
sFn

T
uu ∆+∆−−= )(0 λ  (18) 

Solving for p∆  and substituting )( pxxx Fnn −=∆ , we get the OGY formula: 

nT
u

n
T

u

u

u xc
sf
xf

p ∆=
∆

−
=∆

1λ
λ

 (19) 

 



Chapter 2: Background 

 

18

 Comments 

The OGY control algorithm is basically a linear model, and it does two things: 

1. If the point is on the stable manifold, no action is taken. 

2. If the point is not on the stable manifold, it tries to push it onto the stable manifold. 

If the final formula is analyzed, it can be explained as the product of a gain, and a ratio of 

the current direction x∆ , of the system to a base case, s . On the numerator, the factor 

xf T
u ∆ gives the component of the system along the unstable direction. If the system is orthogonal 

to the unstable eigenvector and is along the stable eigenvector (assuming a 2-dimension space), 

and it will map to the fixed point and requires no external perturbation (dot product of orthogonal 

vectors is zero).  After the point proceeds to the unstable direction the control output tries to force 

it onto the stable manifold and this is possible near the fixed point where the system is at its linear 

best. As the system goes away from the fixed point, the dot product increases and control output 

is maximum when the system moves along the unstable manifold trying to force it onto the stable 

manifold.  

The basic assumption of linearity in the OGY control algorithm is that the eigenspace does 

not change for the system in vicinity of the fixed point. With a small perturbation in the fixed-point 

location, the stable and unstable manifolds change to orient themselves such that the eigenspace 

remains the same. This is true for linear systems only, but can be extended to non-linear systems 

when the change in the eigenspace is not large.  

Equation (19) allows for only one system parameter to be controlled because the equation 

(12) has only one degree of freedom as shown in figure 2.2. The univariate OGY is based on 
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finding an intersection between the equation for the system state and the stable manifold. For 

univariate OGY to succeed, there cannot be more than one unstable direction as the control 

algorithm adjusts the placement of the saddle fixed point through small perturbations of the control 

variable. Thus, the number of independent control variables needed should be equal to the number 

of unstable directions. For multi-dimensional spaces, a multi-dimensional return map is plotted and 

information is extracted for multi-variate control. 

 Multi parameter OGY 

The development of the multivariate OGY control algorithm has been presented by Van 

Goor, (1998).  

Rewriting equation for the system state, 

))(()(1 ppxxMpSpxx oFnFn ∆+−+∆=−+  (20) 

where we now have a N -dimensional system with uN unstable directions and sN stable 

directions, )( us NNN += . In this equation, sp NNp =ℜ∈∆  and uNNS =ℜ∈  is defined as 



















∂
∂

∂
∂

=

||

...

||

1 uN

FF

p
x

p
x

S  (21) 

Thus we have  

pMSSMxx nn ∆−+=+ )(1  (22) 

If 1+nx is to be on the stable manifold, then 1+∆ nx can be expressed as a linear combinations of the 
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stable eigenvectors of M .  

αsVx =  (23) 

where sNN
sV ×ℜ∈  and sNℜ∈α  

Equating we have, 

pMSSMxV ns ∆−+= )(α  (24) 

Rearranging, 

[ ] 







−
∆

⋅−=∆
α
p

VJSSxJ sn )(  (25) 

Solving for p∆  

[ ] ns xJVJSS
p

∆−=







−
∆ −1)(
α

 (26) 

Here only the first sN elements of the left hand matrix need to be calculated. nx∆ is multiplied 

with a fixed   NN s × matrix to obtain the needed parameter perturbations to drive the system into 

the stable manifold.  

 

2.3 Summary 

 In this section, the literature survey for bubbling systems was presented. It was noticed 

that chaos in bubbles has been observed only in the past decade and that attempts to control 

bubbling concentrated on using flow-rate as the manipulated variable. The effect of electrostatic 
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potential on bubble/droplet formation has also been reported to be profound, both in terms of the 

bubble size and frequency. An introduction to chaos and development of a control scheme 

suggested by Ott, Grebogi & Yorke (1990), has been presented. 


