
 

 

 

 

 

Chapter 5 

Application & Implementation 

The world is what it is and I am what I am… This out there and this in me, all this, everything, the 

result of inexplicable forces. A chaos whose order is beyond comprehension 

Henry Miller, Black Spring 

 

 Electrostatic potential was shown to dramatically affect the bifurcation sequence of 

chaotic bubbling. An increase in electrostatic potential caused an increase in the average bubbling 

at a constant flow rate. This has provocative implications wherein the effect of electrostatic 

potential can be harnessed to optimize and control the entire bubbling phenomena. The emphasis 

in this research was on closed loop control enhancements to process performance. 

5.1. Periodicity identification 

The bubbling periodicity identification was the initial step to controlling bubbling.  This 

identification was to be done in real time so that dynamic calculations could be utilized to control 

the bubbling.  
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5.1.1. Statistical modeling 

An initial approach was modeling the bubbling periodicities as a function of the 

frequency distribution of the periods of formation using various regression techniques. (Sarnobat 

& Hines, 1999). The results were not satisfactory because of the non-linearity and extreme 

sensitivity of the bubbling process to perturbations, as against the least squares approach adopted 

by most of the regression analysis. A sample of the model performance is shown in figure 5.1. 

The model performance degraded when the system changed from higher periodicities to lower 

ones. Near chaotic conditions, the model could not discriminate between any of the regimes. 

5.1.2. Neural network models 

It was found that power spectrum analysis could be used to extract the significant 

information (section 4.2). The fundamental peak gives the average frequency of bubbling (say x) 

and peaks observed at 0.75x, 0.5x, 0.25x give information about the periodicity regimes of the 

bubbling (figures 4.4, 4.7, 4.10, 4.13). A non-zero peak height at 0.5x suggests period-2 and a 

peak at 0.25x indicate period-4. The peak at 0.75x is a harmonic of frequencies at 0.25x, but also 

gives a qualitative indication about the existence of  chaos. The peak heights of these peaks along 

with the average bubbling frequency are all that are required to characterize the bubbling 

periodicity. A neural network was constructed to map periodicity regimes of bubbling (Sarnobat 

and co-workers, 1999). The neural network was designed to have 5 inputs and one output. Four of 

the five inputs were the peak heights at multiples of 1x, 0.75x, 0.5x, 0.25x, where x is the 

fundamental frequency in the power spectrum distribution of the time series. The fifth input was 

the value of the fundamental frequency itself. The neural network had one output, which was the 

periodicity of the system. A periodicity of 16 was assigned to the class when the system was in 

deterministic chaos. A Kohonen based neural network was used and the training was conducted  
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Figure 5.1. Performance of numerical model using partial least squares. Input data 

are the frequency distribution of the periodicity and the output is a 'state' vector, which 

indicates the likelihood of the bubbling regime. Each of the periods was assigned a 

'likelihood' between 0-1 which indicated the extent to which the system corresponded to 

that state. (The green line indicates the target and the red line is the estimated state) 

 



Chapter 5: Application & Implementation 

 
81 

with linear vector quantization, (Tsoukalas & Uhrig, 1996; Sarnobat & co-workers, 1999). The 

performance of the neural network model is shown in figure  5.2. The model performance was 

found to be satisfactory, but implementation in LabView for real time calculations was difficult. 

Also for the neural network large amounts of training data were required and the model would 

only be valid if the operating regimes were all comprehensively represented in the training data. 

This was a big factor in considering other techniques for real time identification. 

5.1.3. Periodicity pattern detector 

An important constraint on the real time periodicity identification is the adaptability of 

the algorithm to LabView implementation. A real time simultaneous input/output vi was designed 

to calculate the periods of formation. This was a software timed data acquisition and hence all the 

calculations were done within a 10ms loop between data points. The disadvantage of this method 

was that any memory usage of by the operating system reflected in the timing loops being longer 

than the 10ms. This caused a outliers in the zero-crossings because the time between zero-

crossings also included the additional processing time required by LabView. The effective rate of 

data acquisition was 100Hz at the 'worst' operating condition, which took maximum length of 

time to process the data. The periods of formation were dynamically plotted as a time return map, 

which clearly indicated the periodicity of formation.  

A simple 'pattern-identifier' routine was set up to identify the bubbling regime. It was 

based on the observation that regular patterns are formed in periodic regimes and in chaos no 

pattern can be detected. For period-1 formation, every bubble is of the same size, for period-2 

every third bubble and for period-4, every fourth bubble. In chaos none of the bubbles form a 

pattern. A target array of every second, third & fourth bubble set up. The value of the period of 

formation of the current bubble was subtracted from each of the array elements and the averaged 

differences are compared against a tolerance. A moving window based approach was used keeping 
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Figure 5.2. Neural network performance for identifying the periodicity of 

bubbling. A Kohonen map was used and the network trained by linear vector 

quantization. The inputs were the fundamental peak heights extracted from the power 

spectrum distribution and the average bubbling frequency. (The red dots indicate the 

target and the blue dots indicate the estimated state). 
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{Bubble (3)-
Bubble(0)}<tolerance 

{Bubble (2)-
Bubble(0)}<tolerance 

{Bubble (1)-
Bubble(0)}<tolerance Regime 

0 0 0 Chaos 

0 0 1 ? 

0 1 0 Period-4 

0 1 1 Period-1 

1 0 0 Period-4 

1 0 1 ? 

1 1 0 Period-2 

1 1 1 Period-1 

Table 5.1. Truth table for bubble regime identification (Key: Y=1, N=0)  

the last 32 bubbles in the history array. Longer windows can be used to decrease the over-

sensitivity of the identifier to changes in periodicity. Depending on which elements are below the 

tolerance, a truth table is set-up for the regimes of bubbling. 

The results (figure 5.3, 5.4) suggest that this regime identifier can be used with 

confidence for detecting period-1 and period-2. But, when the bubbling regime enters period-4, 

the measurement error due to either computational limits reached by LabView  or due to external 

noise, causes erratic results because this identifier compares the bubble sizes and any error will 

cause a misclassification of period-4.  

This identifier was used for feedback control to ensure regime of bubbling. A simple P-I 

controller can be implemented for manipulating the flow-rate and/or voltage to achieve the 

required regime of bubbling. Presently this is limited by computational requirements for control 

into either of the regimes. 

5.2.  Regime targeting of bubbling with electrostatic 

potential 

Electrostatic potential was shown to affect the frequency of bubbling in a manner similar 

to increasing the flow rate.  In the frequency plot of figure 4.34, it can be seen that for a single  
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Figure 5.3. Period-1 identification with periodicity pattern identifier. Blue plot is 

the zero-crossings (in units of seconds), plotted against the bubble indices. The red 

plots are the flags for each of the periodicities. This plot shows that the identifier 

captures period-1 satisfactorily (P-1). 
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Figure 5.4. Period-2 identification with periodicity pattern identifier. Blue plot is the 

zero-crossings (units in seconds),plotted against the bubble indices. The red plots are the 

flags for each of the periodicities. This plot shows that the identifier captures period-2 

satisfactorily (P-2). 

 



Chapter 5: Application & Implementation 

 
86 

 frequency of bubbling, an operating line can be determined. This suggests that voltage and flow 

can be used in tandem to maintain constant bubbling frequency. An increase in flow rate can be 

compensated by a corresponding decrease in electrostatic potential, or vice versa.  

A simple PI-controller loop was used with voltage as the manipulated variable, flow rate 

as the disturbance and the average bubbling frequency as the process variable to be held at a set-

point. The average bubbling frequency was calculated by taking the mean of the previous 20 

bubbles. The control moves were implemented after multiples of 20 bubbles (~1s) to give the 

system time to stabilize before implementing the next control move. Results are shown in figures 

5.5-5.7.  

Figure 5.5 (a) shows the response of the system to a gradual increase in the disturbance 

(flow rate). The period for formation, manipulated variable (electrostatic potential) and flow-rate 

are plotted against the number of bubbles. Before the disturbance was introduced into the system, 

the system was at a steady period 1 bubbling with the electrostatic  potential at 10kV. The flow 

rate was gradually varied in a series of small increments from 200cc/min to 420 cc/min. The set 

point was set to the average bubbling frequency before the disturbance was introduced. The aim 

was to get the controller to manipulate voltage to match the bubbling frequency before the 

disturbance was injected. 

From figure 5.5, it can be seen that the controller steps down the voltage so maintain a 

constant bubbling period of formation (0.05s). The plot for the flow rate is noisy on the right hand 

side because the flow rate varies as the pressure at the nozzle varies with the formation of each 

bubble. Figure 5.5 (b) shows the return maps before and after the disturbance. Before the 

disturbance is injected, the system is in a 'noisy' period-1. After the controller has compensated 

for the disturbance, the bubbling frequency is maintained at the set point, but now the system is 

into a noisy period-4.  
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Figure 5.5. (a) An drift of 220cc/min in the disturbance (flow-rate), 

compensated by voltage to track a set point of constant bubbling frequency (0.05s). 

(b)System goes from noisy period-1 at state '1' to period-4 at state'2'  
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Figure 5.6. (a) Negative step change of 235cc/min in disturbance (flow rate) tracked by 

voltage for a set point of 0.05s. (b) System goes from period-4 at state '1' to noisy period-1 

at state'2'. 
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Figure 5.7. (a) Positive step change of 220cc/min in disturbance (flow rate) tracked by 

voltage for a set point of 0.05s (b) System goes from noisy period-1 at state '1' to period-4 at 

state'2'.  
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Figure 5.6 illustrates the effect of a negative step change of 235 cc/min in the 

disturbance. The controller compensates the disturbance and in effect the system goes from a 

period-4 to a noisy period-1.  

Figure 5.7 illustrates the effect of a positive step change of 220 cc/min in the 

disturbance. The controller action maintains the set point of 0.05s, but changes the periodicity of 

the system from a period-1 into period-4.  

In figures 5.5-5.7, outliers are observed on the plot, which shows the zero-crossings. 

These outliers (at ~0.9-1.0s) are actually the formation times of two bubbles, which are caught 

because of a computing limitation of LabView. These do not cause a control loop problem as 

moving window approach is adopted and an average past bubble period is used as the process 

variable. For the runs shown in the figures 5.5-5.7, a moving window of 20 bubbles was found to 

give satisfactory results. 

 

5.3. OGY Control  

The slow control regime targeting method described in section 5.2, demonstrates the 

effect of voltage and suggests that electrostatic potential can be used for control of individual 

bubbles at a higher frequency.  

5.3.1. Calculations 

The crucial step for control is the extraction of information about system stability from 

the time return maps. This is because all the constants in the control law are calculated from the 

values of the stable and unstable manifolds and their corresponding eigenvalues, which in turn are 
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obtained from time return maps. The development of the OGY control algorithm has been 

presented in an earlier section  (chapter 2).  

There are four aspects to this calculation 

1. Identifying the unstable fixed-point  

2. Calculating the manifold directions 

3. Computing the eigenvalues 

4. Shift vector determination 

The first two steps are shown in figure 5.8-5.9.  

5.3.1.1. Identifying the unstable fixed-point  

The unstable fixed-point can be thought of as a periodic trajectory onto which the system 

is to be stablized. On the time return map, (which can be thought of as pseudo-phase space), the 

point moves along the stable manifold, mapping to the fixed-point, and continues to map to the 

fixed-point, until a perturbation causes it to continue along the unstable manifold to complete the 

sequence. For a chaotic attractor, each of the properties is necessary and sufficient. This means 

that all points which map to then selves are fixed-points and all fixed-points map to themselves. 

  

5.3.1.2. Calculating the manifolds 

To calculate the stable and unstable manifolds, various methods have been suggested. A least 

square fitting method has been suggested in Cheng (1996), in which the mapping matrix M is 

calculated by least square approximation of the map data. This method though is fraught with 

errors and as the chaotic system is highly sensitive to the smallest  
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Figure 5.8. Sorting fixed points on the 45º line on the time return map to 

find a true fixed-point. (Flow-rate: 443 cc/min, voltage:10,000V) 

 

1. Fixed points? 
Choose one… 
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Figure 5.9. Identifying the stable and unstable manifold directions. The angle Θ 

denotes the deviation of the calculated unstable manifold from the true unstable 

manifold, which is along the tangent to the attractor at the fixed point. The black 

line approximates the shape of the true attractor. (Flow-rate: 443 cc/min, 

voltage:10,000V) 

2. Stable & 
unstable manifolds 
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perturbations (such as noise), the effectiveness of this method is greatly reduced. Another method 

suggested by Cheng (1996), uses cluster analysis to calculate the manifolds.   

In this method, like other conventional fixed-point calculation approaches, a small 

tolerance is chosen to approximate a region around the fixed-point. Then the points, which map to 

that region are selected and the manifolds calculated. It was observed that in some cases the 

points map to the fixed-point, jump within the approximated tolerance and then jump out along 

the unstable manifold. In such cases, the movement of the fixed-point within the tolerance is 

neglected. But the location of the fixed-point has to be approximated first. This is tricky because 

the system has to 'hit' the fixed-point multiple times to be sure that it is the fixed-point. In 

experimental trials, due to presence of system noise, the chaotic system may map to the 

neighborhood of the unstable fixed-point a number of times before mapping to the fixed-point 

itself. A comprehensive dataset is required before enough information about the fixed-point 

location is acquired. 

The direction of the unstable manifold is the tangent to the chaotic attractor at the fixed-

point location (figure 5.9). Identification of the manifolds from experimental data is usually 

different from the direction of the manifold calculated from analysis of the time return map. To 

compensate from the error in manifold direction, the calculated unstable manifold direction was 

swept through an angle of 15º on either side to search the control law solution space.  

 

5.3.1.3. Calculating the eigenvalues 

By knowing the manifold directions and hence the eigenvectors, one can calculate the 

corresponding eigenvalues based on the following procedure, (taken from Cheng, 1996). 

Consider two consecutive mapping points going to the fixed-point.  



Chapter 5: Application & Implementation 

 
95 

[ ]
[ ]212

11

++

+

=
=

nn

nn

ttp
ttp

 

The slope between these points is: 

nn

nn

tt
tt

m
−

−
=

+

++

1

12  

Since they are located on the same eigenvector, the generalized solution for mapping points can 
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Taking the limit as 0→λ , the eigenvalues around the fixed-point are equal to the slopes of the 
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The following algorithm was used to calculate the fixed-point and the manifolds. 

1. After studying time return maps, a MATLAB™ routine was written to sort the points 

which map within a certain distance of each other. A single fixed-point was isolated by 

visual inspection of the walk-in states. (Figure 5.8) 

2. After choosing a tolerance around this fixed-point, points that mapped to this region were 

determined and the stable direction calculated as an average of many directions identified 

(figure 5.9). 

3. Unstable manifolds were approximated as the direction along which maximum numbers 

of points leave the fixed-point location. This direction was then varied through 15º on 

either side of the approximated unstable manifold direction to compensate for the error in 

approximation.  
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5.3.1.4. Shift vector 

The shift vector is a measure of how much a unit change in the perturbation changes the 

location of the fixed point. It is calculated by calculating the fixed-point location from return 

maps at corresponding to two different conditions of the control variable and then observing the 

change in the fixed point. For the present experiment, the two return maps were plotted at 9500V 

and 10500V giving an effective perturbation of 1000v to the system. The change in the fixed 

point was found to be 0.001s. Thus the change in the return map per unit volt increase in the 

electrostatic potential is 1e-5s. 

 

The OGY control algorithm in its final form is: 

nT
u

n
T

u

u

u xc
sf
xf

p ∆=
∆

−
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1λ
λ

  

and is implemented as  

( ) nxcxcxccp ∆=∆+∆=∆ 23121  

 

5.3.2. Results 

Choice of the bubbling regime was based on the following observations: 

1. Control gain available with electrostatic potential was greater at higher voltages. 

From figure 4.34, it can be seen that the voltage gain has a non-linear behavior and changes 

in bubbling with unit changes in voltage are greater at higher voltages applied at the nozzle. 

2. From the flow rate response, it can be seen that the flow rate affects the bubbling 

with an order of magnitude increase over electrostatic potential. To counter the effect of flow, a 
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comparatively large gain in electrostatic potential is needed (which is not possible with the 

limitations of current equipment). Consequently the minimum flow rate needed to ensure that the 

system was in chaos at the operating voltage was chosen.  

The goal was to bring the system back into higher periodicities, ideally to period-1. 

Several runs with the OGY parameters were carried out and manual tuning of the gain 

coefficients had to be done to ensure that the control moves were in operating limits. A scaling 

coefficient ( 1c ) of the order of 10-2 had to be added to get the calculated controlle r output to be in 

the permissible range of the voltage rippler which was ± 490V. For the control trial carried out in 

figure 5.10 the following constants were used: 

1. Base voltage: 10,000 V 

2. Flow-rate: 443 cc/min 

3. Controller coefficients: c1=0.01, c2=-6.2e5, c3=0.084e5 

4. Data acquisition rate: 100Hz 

These constants were for the set of operating conditions unique to this experimental run. 

Time return maps and manifold calculations were carried out for every experimental run as the 

system information changed with every change in operating conditions. 

The results of a representative OGY control attempt is shown in figure 5.10. In section (a), the 

system is nearly fully chaotic with no voltage being applied and with the application of 

electrostatic potential in (b), the system goes in to, what can be termed as, 'full-blown' chaos. 

Note that a remnant of a period-4 signature can be observed in (b). When the controller action is 

initiated at index 890 in section  (c1), it can be seen that though the system is still in chaos, the  
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Figure 5.10. OGY control attempt with electrostatic potential as the single control 

variable. a) No DC voltage applied. b) 10kV DC voltage applied. c) Control initiated. d) 

Control stopped. e) DC voltage turned off. The red line indicates fixed-point location. 

Number of bubbles 

Pe
ri

od
 o

f 
fo

rm
at

io
n,

 s
 

a b c1 d ec2 

6.1% 8.4% 7.5% 9.6% 



Chapter 5: Application & Implementation 

 
99 

period-4 signature is less distinct. Instead an additional band is observed at the top where the 

system fixed-point location is calculated. In section (c2) it can be seen that there is only one band 

of bubbling. This is because the OGY control moves tend to 'push' the system on the stable 

manifold and the points favor dwelling on the fixed-point. The red line indicates the fixed-point 

location. The control was turned off at the index 1750. Even after the control is turned off, the 

system is seen to be in a state of entrainment in section (d) and the entrainment is lost in section 

(e) where appearance of additional bands is seen. The voltage was again turned off at an index of 

2500.  

Tight control was not observed in controlling the bubbling to a periodic state from its 

open-loop chaotic behavior with control turned on, but a distinct effect of the control moves on 

the bubbles was obvious. The effect of the control scheme is better illustrated in a frequency 

distribution plot (figures 5.11-5.14). A progressive increase in the hits on the fixed-point can be 

seen when the control is turned on (figures 5.12-5.13), as opposed to when there is no control 

(figures 5.11, 5.14). After the control is turned off (figure 5.14), the number of fixed-point hits is 

observed to be higher than the number before the control was turned on (figure 5.11). This can be 

explained by the entrainment phenomenon in which a chaotic system maintains characteristics 

even after the perturbations are turned off.  

 

5.3.3. Entrainment studies 

In the present control experiments, tight control was not observed. It was surmised that 

the controllers gain of 490 V provided by the voltage 'rippler' was not sufficient. To confirm this 

assumption, entrainment studies were carried out (Cheng, 1996). The response of the bubbling to 

a square wave of ± 490V amplitude at various frequencies was studied. No perceptible change  
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Figure 5.11. Frequency distribution of zero crossings before control is turned on 

(region b). Fixed point hits observed are 6.1% of the total number of bubbles 
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Figure 5.12. Frequency distribution of zero crossings after control is turned on 

(region c1). Fixed-point hits increase to 8.4% of the total number of bubbles  
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Figure 5.13. Frequency distribution of zero crossings after control is turned on 

(region c2). Fixed-point hits observed increase to 9.6% of the total number of 

bubbles. 
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Figure 5.14. Frequency distribution of zero crossings after control is turned off 

(region d). Fixed-point hits decrease to 7.5% of the total number of bubbles 
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was observed in the pattern of the bubbles. This confirmed that the available gain was not 

sufficient to control the bubbling from chaotic bubbling to period-1. The present voltage swing 

available moves the fixed point by a distance of 0.001s. This is confirmed by the value of the shift 

vector which is 1e-5 s/volts. To move the fixed point by a distance of 0.01s, rather than 0.001s, an 

amplification factor of 10x is required for the present voltage swing. This would approximately 

mean a voltage swing of ~5000V.  

5.4. Summary 

Real time identification of bubbling was attempted through statistical modeling 

techniques. Real time identification was shown to succeed for bubbling regimes of period-1 and 

period-2 with a scheme that compares the sizes of bubbles with a previous moving window 

history. Regimes of period-4 could not be identified mainly because of lack of faster computing 

resources and the sensitivity of the calculations to measurement errors. Electrostatic potential was 

harnessed to control bubbling to a constant average bubble period of formation as the set point, 

with an increase/decrease in the flow-rate as the disturbance. It was found that with changes in 

disturbance the regime of bubbling could be changed while maintaining a constant average 

bubbling rate. Electrostatic potential was also used as the control variable in the OGY chaos 

control algorithm to tame the chaos in bubbling with partial success. 

 
 


